quinta-feira, 11 de dezembro de 2014

Gráficos

É por meio de gráficos que podemos obter informações sobre uma determinada situação.
Imagem Google








Exemplo, de uma função do 1º grau e seu respectivo gráfico.
Um motorista de táxi cobra R$ 3,50 de bandeirada (valor fixo) mais R$ 0,70 por quilômetro rodado (valor variável).
a) Escreva a fórmula matemática.
b) Determine o valor a ser pago por uma corrida relativa a um percurso de 18 quilômetros.

y = 0,70x + 3,50
y = 0,70 . 18 + 3,50
y = 12,60 + 3,50
y = 16,10 (dezesseis reais e dez centavos)
GRÁFICO DA FUNÇÃO DO 1º GRAU


A PARÁBOLA
Imagem Google

Exemplo, de uma função quadrática ou do 2º grau, e seu respectivo gráfico.
Uma bola é largada do alto de um edifício e cai em direção ao solo. Sua altura y em relação ao solo, x segundos após o lançamento, é dada pela expressão y = –25x² + 625.
a) Após quantos segundos do lançamento a bola atingirá o solo?
a) Construa no plano cartesiano o esboço do gráfico pela função dada.
Y = -25x² + 625
25x² + 625 = 0
- 25x² = - 625 (-1)
25x² = 625
x² = 625 / 25
x² = 25
x = 25
x = 5 → raízes ou zeros da função.
Cálculo das coordenadas do vértice
xv = - b / 2a → xv = - 0 / 2.-25 → xv = 0

yv = axv + bxv + c → yv = -25.0 + 0.0 + 625 → yv = 625

Logo as coordenadas do vértice (x,y)= (0,625)

 Gráfico no plano cartesiano.


VOLTAR


Nenhum comentário:

Postar um comentário